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Volume 2, Chapter 15: Orbit l)eterminatiorl’

1. lntrodudion

An Iiarth sa(cl]ilc collecting GPS data with an cmbcmrct
of ways, the choice depending in part cm the type of orbit ancl mission recluircmcnts.  “J”racking  ancl
navigation rcquircmcnls for a typical mission may include ma] tim state knowlcclgc  and ac[ivc
control during launch and orbit inscrticm (Axclracl and Parkinson, 1989) and during rc-entry and
landing; real time relative navigation bctwccn  vchiclcs  during  rendezvous (llcspcr  et al., 1992;
Axclrad  and Kelley,  1986); autonomous stationkccping and near real time orbit knowledge for
operations and orbit maintenance (Chao ct al,, 1992); rapid post-maneuver orbit rccovcry  (I,ichtcn
ct al., 1993); :incl after-the-fact prccisc orbit dcte.rmination  for scientific analysis (Yunck  et al.,
1985; Schrcincr et al., 1992). C)rbit accuracy requirements can range from hundre(is  of meters or
more for routine operations to a fcw centimeters to support precise ocean a]timctry.  lJniquc]y
among existing tracking systems, CJPS can meet the most stringent of these needs for the most
dynamically unpredictable vchic.lcs.  An overview of CIPS space applications is given in Munjal  ct
al. (1992).

‘1’hc GPS signal bcamwidths cxtcnct  roughly 3000 km bcyonct  the car[h’s limb to enable an earth
orbiter bc]ow that alti[udc  to rcccivc continuous tllrcc-dir~lcl]sic)llal  covcragc. Above 3000 km
altitmic,  covcragc  begins to degrade. This chapter focuses on orbit estimation for satellites in low
circular orbits, below a fcw thousand kilometers, with cn~phasis on the high accuracy that CiPS so
ably provides. Rca] time tcchnique,s  fall under what wc shall call direcf CJPS orbit determination,
in which only the GPS data collcctcd  by the orbiter are used in the solution. For prccisc aftcr-thc-
fact solutions wc turn to a form of dijfcrc}ztial  GPS in which data collcctcd  al multiple ground sites
arc combined with the user data to reduce the overall error. We also cxarninc  briefly the adaptation
of G]% tracking techniques to satellites in highly elliptical and geosynchronous orbits.

The potential of GPS to provide accurate and autonomous satellite orbit de.termination was noted
early in its dcvclopmcnt, for example, by Parkinson ( 1976). Early stuctics  of direct GPS-based
tracking inc]udc  those by l~arr ( 1979), who surveyed applications from near Earth to beyond
gcosynchrormus  altitudes; Van Lecuwccn  et al. (1979), W}1O examined GPS tracking of the Space
Shuttle; Taplcy ( 1980), who focused on autonomous near Earth navigation; Wooden and Teles
( 1980), who dcscribcd  NASA’s first p]anncd  CiPS orbital application to 1.andsat-4;  Kmzha]s  and
I:uchs ( 19’81 ), who compared the potential of GPS and NASA’s Tracking and Data Relay Satellite
Systcm (“1’I>RSS)  for onboard navigation; Masson et al, (1 982), who discussed flight receiver
rcquircmcnts and expected onboard orbit accuracies from near Earth to geosynchronous altitucle;
and Jorgensen ( 1982), who addrcsscct  geosynchronous applications, The first reported results
from ctircct  GPS tracking were those of the Landsat-4 cxpcrimcnt  (]]eubcrgcr  and Church, 1983;
f ‘ang and Scifcr[, 1985), which achieved approximately 20 m accuracy during the relatively brief
periods of goo(i GPS visibility at that time.

Among the first dcscrip[ions  of prccisc orbit determination at the lCVC1 of several dccimc.tcrs or
better by differential GPS techniques arc those by Ondrasik  and Wu ( 1982), who proposed a sub-
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dccinm[er  carrier phase-based technic]uc for the ‘1’opcx (latcrl’cJ1>cx/l’cJsc  iclorl)  ocean altimetry
mission; Anancia an(i ChcrmicJc  ( 1982), who exanlinccl  cliffcrcntia]  tracking of a low altitucle  orbiter;
Wu ( 1985), who proposed differential techniclues  for hig}l  altitude satellites; and Yunck et al.
( 1985), who surveyed a variety of cliffcrcntia]  GPS applications. Since then, several important
rcfincmcnts have been introduced which better  exploit the unique signals anti the unprcccclcnted
otmrving  strength GPS provicics.

2. Principles of Orbit Determination

instantaneous point positioning with GPS pscuclorange  is about as accurate in low orbit as on the
grouncl:  typically 50-100 m for the SPS user (unclcr nominal levels of selective availability) ancl
10-20 m for the PPS user. instantaneous velocity solutions derived from carrier phase rate may
be accurate to 0.5 m/scc for the SPS user and better  than 0.1 nl/scc for the PPS user. While such
solutions are aclec]uate  for many purposes, they have limitations. An instantaneous solution is
impossible during data outages or periods of restricted visibility, for example, ancl its accuracy may
be inac]cquatc  for orbit prediction or for some real time neecls.  Some scientific instruments require
real time position knowledge of meters to tens of n)cters for accurate pointing, while after-the-fact
rcqilircnlcnts  can be far more stringent. To reduce the instantaneous position and velocity crmr,
Ihe traciitional  tools of dynamic orbit estimation can be brought to bear.

(i,) 1) ymmic Orbit Ih:tcrmimtim

(:lassical  dynamic orbit cietermination  exploits orbital mcc.hanics---the physics uncier]ying orbital
motion- tincl filtering theory to yield a well-cictcrmincci solution from generally sparse :incl noisy
n)casurcments. ‘1’his approach has in fact been necessary with convcntion:il  tracking systems,
which, unlike  GPS, seldom if ever provide sufficient information at one time for a geometric
solution, ancl can provicle  no measurements at all over much of the globe. (An exception is the usc
of range and angle clata from a single site to clctermim the instantaneous position of gcostationary
satellites, though the accuracy of that technique is Pm worse than with CJPS, ) An orbit moclcl  must
therefore be introcluccci  to sLlpply  the missing infcmnation.  lr~ dynamic orbit determination the orbit
mocicl  is dcrivcci from models of the forces acting on the satellite and the laws of motion,

‘1’hc process begins with a set of tracking n~easurcnwnts  (range, Doppler, or angles, for exarmplc)
aicmg with mathematical models of the forces acting on the satellite anti of the satellite physicai
properties. The major forces inc]udc gravity, aerodynamic drag anti lift, solar radiation pressure,
satellite thermal radiation, and active thrusting. 1,esscr contributions may come from leaks and
outgassing,  sun]ight  reficcted  from the earth, anti electromagnetic effects. l’hc force and satellite
rnoclcls  arc then used to compute a model of sateliitc  acceleration over time, from which, by ciouble
integration, a nominal trajectory is formed, In principle, all that’s then needcci to prociucc  the orbit
solution is to cictcrminc  the two vector constants of integration- –position and velocity at some time
point- also known as the epoch state. That is done through an estimation procedure which finds
the epoch state for which the resulting model trajectory best fits the tracking ciata,  according to
some opt imaiit y criterion---usually minimizing  the mean square fitting error. ‘1’0 imprc)vc  the fit,
one can simultaneously estimate various other mocicl  parameters, such as cirag,  solar radiation, or
gravity mode] cocfficicmts,  or cmpiricai parameters, such as nonspecific once- and twice-per-orbit
accelerations. The resulting solution, however, is stili a trajectory dcrivcci  from force models, and
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its accuracy depends on how faithfully those models, fixed or adjusted, describe the real forces
acting on the satellite.

More formally, to construct a nominal or a priori satellite trajectory we begin with Newton’s
second law of molion

f=ma=mr (1)

or
ff=_
m (2)

where r is the satellite position vector. This fundamental equation of mechanics provides the
dynamical constraint governing the orbit so]ulion. The true accclcrat  ion rat any instant depends on
the satellite position and velocity at that instant, and on many other parameters that charactcriy.c the
forces at work. ]n the orbit solution, those parameters may take the form of spherical harmonic
gravi[y  cocfficicnts,  clrag and lift coefficients, solar flux and reflectivity, a geomagnetic index, and
so on. 1.ct (rO, ro) be the true satellite epoch state to be estimated. We first select a nominal epoch
state (rOr), roll), perhaps from an instantaneous GPS state solution, and construct an acceleration
model ill([) from [he force and sa[ellitc models. The nominal trajectory m(t) is then generated by
double intcgrat  ion of the accclcrat ion moclcl,

‘1’hc least scluarcs  solution

m(t) =
U

m(t) dt -t rOn t -+ ron (3)

procedure will then estimate corrections to the nominal epoch state (and,
if dc.sired, to selected force model parameters) that bring the model trajectory into better agreement
wit]) the tracking data. If only the six-clcmcnt  epoch state and a few other parameters arc adjusted,
as is commonly the case, then in principle only a relatively few n~casurcmcnts  around [he orbit arc
needed to yield a well-dctcrmincd solution, and a sparse tracking network will suffice. This is the
great power and appca] of dynamic orbit determination. Since the first days of space exploration
this tcchn  iquc has made practical the accurate tracking of Earth sate]] itcs and deep space probes.

Olmcrvc, however, that the resulting orbit solution depends intimately on the (possibly adjusted)
acceleration model r,)(t). Where high accuracy orbits are required, high accuracy models must be
founcl. l’his can be enormously costly and may be a practical impossibility in the case of low
altitude and maneuvering vehicles. In the mid-l 980s it was recognized that the continuous 3-IJ
coverage provided by (3PS offers an escape from this dynamical bind. Before describing the orbit
estimation techniques, wc first review some principles of optima] estimation theory.

b) 7hr A7tc}r Ixnt Sqmres Solution

A tinm-honored technique for estimating satellite orbits is the method of least squares, first
emp]oycd  by Clauss  in 1795. l.ct z be a vector of tracking measurements (z, ],..,, ZJ))7” made over
an interval of time, often called a tracking arc, The objective is to find the one trajectory among  all
possible trajectories satisfying the dynamical constraint (Ec1, 2) which minimizes the mean square
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diffcren~c  b~twccn thc ac(ual  observations ~i and theoretical observations Zi derived fronl [he
solution trajectory. That is, wc want to finci the trajectory r(t) that minimi~,cs the functional

(4)

As this is a nonlinear problem, wc reformulate it as one of computing a linear correction to the
nominal trajectory m(t) given by P;q. 3. liirst we compute theoretical observations Zi from the
nominal trajectory, then form the differences b~i = ~i - Zi. These prcfif  residuals become the
observations to be used in a linear adjustment of the nominal trajectory. (Strictly speaking, this is
still not :i linear problem; but if the nominal trajectory is sufficiently C1OSC to the true trajectory, it
will be in the “linear regime, ” where a linear correction is actcc]uate, if not perfect. If greater
accuracy is needed, a linear correction to the new solution can be computed, and so on, until the
solution converges. ) The familiar linear equation can be written

6z=Ax-tn (5)

where x is the vector of parameters to be estimated, n is the vector of random n~casurcmcnt  noise
on the observations 6z, and A is a matrix of partial derivatives of the observations with respect to
the elements of x. Here x includes at a minimum the adjustments to the six epoch state parameters,
and may include a(ljustmcnts to various dynamic and geometric model  parameters as well.
1 ;quation 5 is called the regression equation and A is the matrix of regression coefficients.

A detailed discussion of the construction of A is beyond  the scope of this chapter, but a simple
overview is in order. An clement aij of A is given by

(6)

where, for simplicity, Zi now represents the differential clement ~~i. This partial derivative relates
an observation Z,i at one time point to state parameter xj at a possibly remote reference time. The A
matrix thus contains the state transition information from the reference epoch to all times in the data
arc and must therefore embody the dynamical constraint of Eq. 2. To compute the aij wc first write

where xCi represents the satellite state at the time of observation Zi. This explicitly introduces the
current state xci and its relation to both the current observation ~i and the epoch (and other) state
variables xj. The partial d~i/d~Ci  contains no dynamical information and can be computed directly.
‘1’hc partial d~Ci/dxj  relates the satellite state at the observation time to the epoch state and thus
embodies the dynamical constraint. 3’o determine that partial we differentiate the equation of
motion (3) with respect to the epoch state parameters, producing a set of linear second order
differential equations in d~Ci/~xj.  These variatimaf  eqmfions  arc then intcgratc(i numerically to
obtain the partial derivative, and thus the final regression coefficients.
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l’hc well-known least squares

Where

solution corresponding to the regression equation  (5) is given by

(8)~ D (A3 @ A )- 1 A’[’ ~~ ] ~

R,, = Ii[ n 11’1’] (9)

is lhc covariancc matrix associated with the nmasurcmcnt  noise vector  n. This is known as the
batch least squares solution since it rcqL]ircs that all observations over a data arc be collected
together and processed as a batch, ]n practice, when many parameters are estimated Eq. 8 will
require large matrix inversions, which can give rise to serious numerical problems, Most orbit
(ictcrmination  filters today therefore employ more stab]c tcchniqms that we shall deal with shmlly.

A spaceborne GPS app]icat  ion may mquirc a cent inures real t i mc st atc solution more accurate than
point positioning can proviclc. A]though  filtering is necdc(i  to achieve this, a batch solution is
gcncral]y  inappropri:itc  since it may require a long accumulation of measurements ant] a l:irge
amount of computation at once. ]n such cases a seqwmtia]  estimator is called for, the most i>opu]ar
example of which is the Kalman filter.

A sccpmntia]  filter continually updates the current state estimate with each new mcasmemnt. ‘1’hc
computatim  nccdcd for each update is small compared with that for a f[lll batch solution (aithough
for a properly formulated filter the computation required for many hours of upclatcs  is comparable
to that for the same size batch solution); hence an onboard processor can maintain the solution in
real time. It shou]d be noted that the sequential current state estimate employs only data from the
past up to the. present, while a batch filter may estimate a state with data from both before and after
an epoch. In non-real time uses the final sequential state estimate can bc mappcci  to all times in the
ciata arc, just as in a batch solution, to achieve an equivalent resu]t,

‘1’hc conventional Kalman filter is formulated in discrete time recursion relations. Suppose the filter
has produced a state estimate ii, at ~me ti (using  (Iata Llp to and including time ti), and that the
CStlIIMtd  covariancc  matrix for ii is pi. The state SO] LltiOJl ii+ ~ at time ti+ ~ is derive(i in two steps:
1 ) the tinze llp(ic{ie,  in which a predicted or a priori solution Yi+l  and covariancc matrix pi+, arc
gcncrateci  from their values at time ti, with noAnew ciata  yet included, and 2) the mea.fliremenf
///)d(Itc, in which the new estimates ii+ I and I>i+ I are gcnerate(i  from the (iata at time ti+ ,, as
corrections to the predicted vailles.

‘]’hc time update proceeds as follows:

anti
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WhCIC d~i js the transj(ion  matrjx, dcrivcci  f]on~ th~ eqL]ation  of motion, relating the stat~ at ti LO the
state at ti+,. The nmasmmmt  update is then

ii+] = ii+ ] + Gi+ , (Zi+ [ -- Ai+ , ii+ ,) (12)

and (13)

wberc ~i is the nlcasLlrcmcnt  vector at time ti, Ai js the matrix of mcaswmncnt partia]s with respect
to xi, at~d Gi js the SC)-Calld  Kalman gain, given by

(14)

where Rlli is the error covar]ancc  of the n~casuremcnt vector ~i. (In some applications, for cxan@e
where onboarc]  computing may be 1 imitcd, a sLlbopt i tmil fixd gain filter can bc. cmployccl,  in which
G is ]~lcclctcrlllirlcd,)  Note from (14) that, like the batch formulation, the conventiomd  cLirrcnt state
Kalman f]lter fornlLllation jnvo]vcs  matrix jnvcrsion, which can lcaci to numerical instability.
VarjoLls  alternative approaches have been devised (e.g., Bierman, 1977 and Thornton, 1976)
which cmp]oy  pse/4docpoch  state factori?,ccl  formulations. These avojd matrix inversion by
factmjng  P into either upper triangular and diagonal matrices (lJ-I> formulation) or jts square-root
ma[rices (square-root information filter or SRIF formulation). F;actori7ccl  filters have been
incorporated into several of NASA’s high performance orbit dctctmination systems. For more on
these tcchniq Lies see 1.ichtcn (1990) and the references therein.

Comparison of the batch and sequential fornlLdations reveals that the latter is simply a rccLlrsivc
equivalent of the former. For a given data arc, the final scqLlcntial  and batch solutions, when
mapped to the same epoch with the final dynamical models, will bc identical. As presented here,
both arc dynamical formLllations  which clcpcnd fmdamcntally  on physical force moclels  to produce
the solLltion  trajectory. It js worthwhile at this point to examine the principal errors that arise in the
dynamic state solLltions.

d) IIymim ic Orbit I.’rror

}’or simplicity, let LIS consider only the PI’S user and only posjtion  error. l’hc typjca] accLmcy  of
instantane.oL1s  point positioning with pscLldorangc  js ] 0-20  Jn, wjth the major errors resLl]ting  from
GPS orbit and clock error, and pscuclmange  n~casurcmcnt  error. I;iltcre(i solLttions redLlce these
errors in three ways. Fjrst, random nwasLmmcnt  error is smoothed against the dynamic model
over the full fittjng arc, with the resLllting position error decreasing invc.rsely  as the sqLiarc-root  of
time. Meter-level independent random errors can, after a few hoLws, be rcdLlccd  to centimeters. At
the same time, many systematk  errors---C;PS orbits ancl clocks, nwltipath--wi]l  be at least partly
inconsistent wjth (orthogonal to) the Llscr satellite dynamic models, and will be attcnLlatcd  in the
solution. (F,rrors that correlate strongly with orbital dynamics, such as once-per-orbit lonospherjc
effects, may remain at fLdl force.) Ijinal]y, dynamic information is ]ntroduccd  which supplements
(and may dominate.) the geometric information in the point position solLlticm. Dynanlic  orbit
accLlracies  of a few meters might therefore bc achic.vecl.  A number of groLqN now distribute CIPS

6



,

4

mbit and clock solutions  that are accurate to better than 1 m. When those rather than broadcast
data arc used. the filtcrcci user state error can f~ll below 1 m.

‘1’his error rcductim  does not come for free: As the dynamic fil(m smooths n~casurcmcnt  error, it
introduces dynamic mode] error. Since force modc]s  arc inlpcrfcct,  the intcgratcci  mocici  trajectory
will bc imperfect as well, }kwcc mo(icl aciiLlstnlcnts made as part of the solution may offer little
imi~rovcmcnt.  Anci since the dynzmic SOILltiOn  yie.]cls  a trajectory clcrivc(i  from the final force
mode]s, rcsiciLlai  errors in those models  become  errors in the soiLHion  trajectory. Gravity and drag
mocic] mm’s are OftCn  dOllliJMfll, d both increase rapictiy  as (}1c sate]litc  a]titLlcic  is rc(iucc(i. ThLls
accurate dynamic orbit determination becomes problematical at low aititmics.  To take some
examples, (1IC mo(ion of Lagcos,  a dense, inert sphere at about 6000 km aititude,  can bc nmctcle(i
to within a fcw centimeters over periods of weeks; the motion of Topcx/Poseidon, a nlL]ch larger
vchiclc  at 1336 km, to about 10 cm over 10 ciays;  the motion of SIiASAT, at 800 km, to one or
two mete.rs over one day; an(i tbc motion of the S}luttic,  at 300-400 km, to no better ti~an tens of
meters over an orbit. At low aitit  Llcics, thcrcforc, dynamic filtering may offer little. or no advantage
over simple point positioning,

l)ynamic mocici errors often rcvcai tbcmsclves as signatLum in the post-fit rcsiduais;  that is, they
cmite  systematic (iiscrepancim  between the actLlal  measurements, which reflect the trLlc trajectory,
an(i t}lcorcticai  nmasLlrenlcnts derived from the solution tr:ljcctory.  We can inlagine  an extreme
case in which a force varies randomly from one time step to the next an(i is therefore inhcrcnt]y
Llnprc(iictab]c,  bLlt can be observed in the rcsicluais. At some level,  a nLmbcr of forces (c.g,, drag,
gravity anomalies) can appear to behave that way. What is needed, then, is a means of cxploi(ing
information in the rcsidLla]s  to correct the orbit so] Lltion. The Kalman filter provides sL]ch a means
in the form of process noise modeling.

ALlgnwnting  a Kalman fiitcr with a process noise model is a way of telling the fiitcr that the
information in d) and A describing the behavior of the state is illcc)l~~l~lctc---that  there is a
component of that behavior for which the filter has no model, which it cannot predict, but which it
may be able to observe in t}m data. This unknown behavior is modcicci  in the filter as a stochastic
iwoccss  (thoLlgh in reality it maybe deterministic). ‘1’he filter then tries to cictect  that behavior in the
nmwLlrcnmnts  and track it at each time step.

in the context of orbit determination this means that at each time step, in aciciition  to applying the
stanciarct  (iynamic  Llpdates,  the filter wiii examine the discrepancy between the dynamic sta[c
estimate and the apparent state as incticate(i  by the nlcasLmnlcnts.  I:rOJn  that discrepancy it wiil
estimate. a iocai correction to the dynamic model, valid oniy over the update intervai  (ti_l, ti). When
a[idcd  to the dynamic model, that correction wili red Llcc the disagrccmcnt  bctwcc.n  the observations
an(i the sol Lltion trajectory at time ti. As it proceeds throLlgh  the data, the. filter wiii .gwncratc  a
scc]Lmcc of locai force model corrections, one at each update, time, bringing the solLltion  trajectory
into better agrccmcnt  with the observations. That may be good or baci, depending on the qLmlity  of
the observations and the accLnacy  of the modc]s.  We will thcrcforc  want to take care to hinder the
iocal comctions  from chasing after bad nleasLmmcnts.
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The process noise mode] can take many forms, and various constraints may bc apJ3]icd [0 ]imi( the
freedom of each ncw correction to (Icparl from the dynamic model or from the prcvioLls  correction.
in prac[ice, the stochastic correction is often intro(iLlccd  by aL1.gnmnting  the state vector xi with a
paranwtcr vector pi representing (hc  IOC:I1 force II)OdCl adjustment to bc estimated at tim [i. I;or
this discussion wc will let Pi=(pil,  pi2, pi3)”l’ denote  a 3-D force which is constant over the interval
(ti. 1, (i) anti zero elsewhere. “]’his force will be es[imated  to accoLlnt  for any discrepancy bctwccn
the dynamic solution update  and the observations at time ti, and this will bc rcpcatcd  at all (imc
steps. q’hc augmented state vector X thus has three adc]itiona] C]cments

[1x=xp (15)

An cffcctivc  rcalimtion  of the process noise sequential filter Llscd extensively by NASA in orbit
cstimtion is given below (Bierman,  1977; Wu et al., 1986),

III)IC [Jpdm:

and

where now wc have

[

@x(j+-]  ,j) @xp(j+. ] ,j)
@i z

o Mi 1
(18)

(19)

q~X is the dynamic transition matrix of liq. 10; q~XP(i+ 1,i) is the transition matrix relating ii+ ~ to the
process noise parameters pi; Mi is a 3x3 diagonal matrix with the jth element

Illj  =  CXP [--(ti+  1 –  ti) 1 ‘tjl (20)

Qi is a diagonal covariancc matrix associated with a white noise process, with the jth element

and 1P is a 3x3 identity matrix. The measurement update  eqLlations  arc identical to ( 12)-(14),
cxccpt  that now wc L]SC the aLlgnlcnted  state vector’ X and its associated covariance  matrix P.
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‘Ibis is a first-cmier Gauss-Markov process noise model. Note that hdi is the transition matrix for
the procc.ss noise parameters, and thal the transition is in the form of a decaying exponential
correlation. ‘l’he time constant ~i in (20) can be chosen to reflect the correlation in the dynamic
modeling error (and thus in the (icsircd corrcciion)  over one update intcrva].  If ~i is nlL]ch smaller
than the update interval, then l~li  is small; the model error is tbcrcfore regarded as uncorrc]ateci  from
batch to batch, and this becomes a white noise error moclcl. ~’here is one other selectable

~. ThroLlgh Eq. 21, @ scales the batch-to-batch variance qi,paramclcr, the steady state variance 0
which further constrains the correction. In the case of a white noise model,  this constrains each
independent correction with respect to the dynamic model, with no dcpcnclcncc  on the previous
correction, If ~i=O,  the local force correction is constrained to mo and the conventional dynamic
sol L1tion is obtained. in summary, the real constraint is dctcrmincd by ~i (throLlgh l~li) and a? as
they combine through (21 ) to form the weighting matrix elements qi.

Stochastic force models introdLlcc  an additional complication for non-real time applications in
which an optimal solution over an entire data arc is desired. It is no longer sLlfficicnt  simply to
map the final state solution to other times by means of the f]nal dynamical models. The local form
corrections have been determined with data only LIp to the times they occLw,  and thLls  have not
bcncfitted  from later n~casLwcn~cnts.  To complete the estimates of the local forces it is necessary to
filter the data in the reverse direction as well, a process called  smoothing, before mapping to all
time poin(s. The combined estimator is known as a filter/sn~oothcr.

With conventional (sparse) tracking data one must be careful when employing process noise mode]
corrections. q’hc data acqLlircd  at any one time are often weak (or nonexistent), and insLlfficicnt  by
themselves to dctcrminc  position. A relaxed constraint on the process noise estimate may rcsLdt in
a large and crroncoLls  adj Llstnlcnt  to the state, or may caLlsc  the sol Lltion  to fail. Care must be taken
to cons(rain  the corrections within the observability limits of the data. ~’his has traditionally meant
relatively long correlation times and tight batch-to-batch sigmas.

3. Orbit Estimation with GPS

Wc arc now in a position to examine the powerful a(ivantages  G}JS brings to estimating satellite
orbits. First we’ll look at a pL1rely  geometric technique that can improve dramatically upon point
positioning accuracy, wi(hout  any dynamic filtering, by combining the continuous carrier phase
and pscLldorange observable.

a) (.’cirri(’r-l).vel~dor{l~lgc  Prcci.w Posit ioning

When pscudorange  and continuoLls carrier phase arc broug}lt together, the basic method of
geometric point positioning can be refined to track the position of an arbitrarily moving vehicle
with high accLu-acy.  The technique is analogoLls to estimating a carrier phase bias by averaging the
difference between continuous phase and pscLldorange. This converts biased phase to a precise
pscLlclorangc  with a mall rcsidLlal bias, preserving the cletailed information on range change in
carrier phase. More generally, we can construct a biased record of 3-D position change from
nlLllti-satellite carrier phase, then estimate the 3-D position bias by averaging the point-by-point
vector difference between that recorci and corrcspon(iing  point position solLltions.
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The concept is illLlstratcd  in Figs. 1 a-c. A sec]Llcmcc  of N indcpc.ndcnt point position solutions ~k
is shown in l~ig 1a. The true receiver motion is represented by (}1c dashed line. If x~ is the true
position  at time tk, wc ~an write

(22)

where, for sinll)]i~ity, wc assLln]c  nk is a white noise process  with diagona]  c~variat]c~  c]~n~cn(s
~~j, j= 1,2,3. Figure lb shows the record of position change obtained by tracking carrier phase
over the same arc. This is a precise representation of the true path, but with an arbitrary offset in
position. 1[ can be regarded as a series of position estimates, Rk, having a small random error and
an arbitrary common bias:

ik=~~+b+ek (23)

where b is the bias vector and Ck is a white noise vector having diagonal  covariancc  clen~cnts  ~~j.
We estimate the bias b by averaging the difference between the ~k and ~k:

(24)

01 (25)

Since ~rj is typically 100 times smaller than ~nj, the approximate component error on the bias
estimate is

ThLJs meter-]cvc] random noise on ] -SCC J) SCLldOrangC data can give a decimeter-level bias estimate
within 2 rein, and a centimeter-level estimate within a few hours. (We ignore GPS ephemeris and
clock error, which are treated in later sections. ) !_$Llbtracting  Eq. 25 from F.q. 23 eliminates the
position bias in the phase solution to give a precise record of absolute position. As shown in
};ig, 1 c, the final path solution sits close to, and has nearly the exact shape of, the trLlc path. I’hc
final positioJls Wi]] have an apprOXilllate conqloJlmt  error

ox = (Cr; + 0$)1’2 (27)

where o: represents the residual bias common to all points and Ge is the point-to-point random
error. ‘lihc so~ution  path therefore has the precision and time rcso~ution  of a pure carrier solution,
with an absolLltc  bias that is a fraction of the point position error.



‘1’his technique is well suited to real time recursive execution. Consiclcr a receiver that produces an
instant ancoLls  point position $ik at time t~, and position change  A~~ obtained from carrier phase
tracked from t~.l to tk. An unbiascct  estimate $i,l+, of the position at time t,)+, is given by:

This is a variation on the recursive formula for a si mplc average:

(28)

(29)

‘1’hc position change  information, Ail] +,, maps the current position estimate %,1 forward to the next
time J~oint for averaging with the point position ~,1+,  computed at that time, Carrier phase, in
effect, incrlially  aids the scqL]cntial  averaging of point position solutions to refine the phase bias
estimate. The procedure can be tLmcd by weighting each ~~ by its inverse covariancc.

A princip:i] virtue of this technique is its extreme simplicity. A filter to precisely track unprc-
clictab]c  motion (or the relative positions of multiple vehicles) can be realized in a few lines of cocic.
Onc drawback is its exclusion of external information about platform dynamics, making the solLl-
tion vLl]ncrablc  to outages which might easily be bridged with dynamic models. l’his is remedied
in a more robust technique that employs the Kalman filter formalism.

b) Kimvnatic Orbit Iktermiwtion

When a Kalman filter is applied to GPS data from a low orbiter, the full advantage of continuous
3-]) COVCIagC nl:~y not bc rcaliz,cd  without an aggressive LISC of process noise corrections. ]f wc
assume a full CiPS constellation, a flight  receiver having six or eight parallel channels, and a
relatively wide ficl(i  of view, strong instantaneous observing geometry is assured. lnc]usion  of
continuous carrier phase data vastly increases the potential precision of the estimates. It then
bccomcs  Jlossib]c to relax or eliminate constraints on the process noise force corrections ancl track
the true motion of the vehicle with great precision.

‘J’hc concept is il]Llstratcd in Fig. 2. The dashed curve represents the irregular path of a low orbiter
subject to varying forces. With GPS data collected by the orbiter, wc can execute a traditional
dynamic orbit solLltion  to prodLlcc the smooth orbit estimate shown by the solid line. This leaves a
set of (possibly large) post-fit residuals. Because CiPS provides continuoLls 3-D coverage, the
post-fit residuals at each time point suffice to reconstrLlct the observed satellite position (its
clcJxirturc  from the dynamic solution) by purely geometric means. The observed trajectory can then
be constructed by adding the geometrically determined correction to the dynamic solution at each
time point, Force model error, reflected in the initial post-fit residuals, is thereby eliminated.

‘l’his can be thought of as two distinct steps: First, a conventional dynamic solution produces a
reference tr:ijcctory and post-fit residuals; the residual path is then constructed geometrically, point
by point, and adde(i  to the dynamic solution, in practice this can be done in one estimation step in
a Kalman  filter with process noise. The estimated process noise parameters p in Iiq. 15 can
provide the geometric corrections to the dynamic solution. ]n ordinary tracking applications those
parameters would be tightly constrained and geometric information only weakly expressed. }3Llt
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the fL]ll observability of fcrtd by (31’S allOWS  all ccms[raint to bC ICIIIOVCCI,  211c correlation time Ti
can be set to 7,cm (white noise model) and the steady state variance C/ to a large valLIc. The filter
will then estimate a 3-11 force correction for each interval (and a corresponding change in the
current state) to exactly accoLlnt  for the geometric discrepancy between the mcasurcmcnts  and the
dynamic solLltion. ‘]’his is called non-dynamic or ki}lemafic orbit determination, though both terms
arc somewhat misleading since the tcchniq Llc bLli Ms on an Lmdcr]ying  dynamic formulation.

As wc shall see in more detail later, the kinematic solLltion can be carried oLlt  with pscudorangc  data
alone, with carrier phase data alone, or with the two in combination, Observe, however, that as
the dynamic constraint is relaxed to allow the geometric correction, the effect of measurement error
increases. ]nstcad of being smoothed against the dynamic model, single-point measurement error
is fully expressed in the geometric correction. ‘1’hLls  when pscLldorangc  alone is USCC1, the solLltion
becomes a series of point positions with full pseuctorangc  noise. For precise applications
continLloLls  carrier phase is therefore essential. Although this resembles the pLwely  geometric
tcchniqL)c  of carrier-pseL)ctorangc positioning, the Kalman filter formLllation,  with its dynamic core,
is inherently stronger and permits a highly accLlrate  kinematic solution with carrier data alone.

c) RdM-ed  Dynamic Orbit Iktcrmimtion

Because the kinematic correction is geometric, it is vLllncrab]c to weak geometry. Momentary data
oLJlagcs  or large PIIOPS will caLlse the error to grow or the solLltion  to fail. It may be noted,
moreover, that the kinematic so] LltioIl  makes ]ittlc LISC of dynamic information--it is an empirics]
rcsLl]t constructed from the mcasLwcmcnts.  Often, however, LlscfLl]  dynamic information is at hand
which, properly combined with geometric information, can improve the rcsLllt. When geometry
weakens or fails, dynamic information can then carry the solLltion with high accLtracy.

We can achieve {I balance of dynamic and geometric information in the orbit solLltion  by imposing a
jLl(iicioL1s  constraint on the process noise parameters. In an optimal solution (Llndcr the assL}mption
of a C~auss-Markov  process noise model) the, time,  constant Ii will reflect the actLlal  correlation time
of dynamic model errors, and the steady state variance o? the actual error in the dynamic model.
‘1’hc giometric corrections will not be free to follow the mcasLwcments  wherever they lead, bLU will
bc boLInd by the constraint to the dynamic model. Relative weight will in fact shift back and forth
between dynamic and geometric information as observing strength varies. When geometry is
weak, the process noise constraint will hold the correction close to the dynamic solLltion;  if there
arc no observations at all, no correction can be compLlted  ancl the dynamic solution is prod Llccd.
‘1’his opt i miz,ed  tcchniqLlc  is known as rdf/ccd  dynamic  orbit dctcrminat  ion.

Another interpretation is given in Fig. 3, which illLlstratcs  the relative significance of random and
systematic error in the solLnion trajectory. In the dynamic solLltion, random error is minimized
(since the fewest parameters arc adjLlstcd) while dynamic error is fLdly expressed. ‘Ilis  is reversed
in the kinematic solLltion  as many parameters are adjLlstcd,  amplifying the effect of da[a noise while
absorbing dynamic error. The rcdLlccd dynamic solution seeks the optimal balance to minimize
overall error. We note, however, that minim Lml error is not always the first objective. I~or some
science applications it may be desirable to convert systematic error to random error (kinematic
solution) or vice versa (dynamic solLltion),  even if the total error is not minimized.
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This raises the question of how onc C11OOSCS the process noise weighting. Oftcn there is some
prior know] cclgc of the qLlality  of the force models in usc and (he consequent position error
cxpcctcct.  C13mputer  simulations or covariancc :ina]ysis can then sLlggcst  a mtsonablc  a priori
wcightin~.  When real data bccomc available, ii variety of strategies for tuning the rectuccd  dynamic
constraints become possible. Onc approach is simply to observe the magnitude of (I1c process
noise corrections. If they are near or exceed  the constraints, the constraints shou]cl  be relaxcct;  if
they fall well short, the constr:iints  can be tightened. Another technique is to compare cm~tigLlous
orbit solutions at common end points (or on shorl  ovcrlaJq~ing segments) and then tLlnc the
constrains to nlaxinli7,c the agrccmcnt.

The reduced dynamic tcchniqLle  is one realization of the concept depicted in Fig. 2; many others are
possible, ]Jor example, we might directly ccmq]Lltc position rather than force corrections. An
approach along those lines proposed by Wu (1992) has certain advantages (and is cLumMltl  y being
cxJ>]oitcd) for gravity recovery. Force corrections, however, directly augment the dynamic model
and have the virt Lw that, although diSCOntin  LlOLIS  (picccwisc constant) thcnlsclvcs, they yie.lc] a
continLloLls  [rajcctory  when integrated.

‘1’hc rcdLlccd dynamic solution introduces local force mocie] corrections to recluce  the effects of
ciynamic model error. often it is more efficient to reduce that error by adjusting physical model
paratncters;  fewer adjustments may be needed and data strength preserved. Adjustment of drag
coefficients and radiation pressure terms (for both rcceivccl solar radiation and emitted thermal
radiation), for example, is common. ParticLtlarly attractive with GPS tracking data is gravity
fining, or adjustment of gravity field coefficients. The geopotcntial  is commonly represented as a
spherical harmonic expansion containing anywhere from a fcw terms to a few thoLlsand terms,
depending on the fidelity required, In contrast to process noise parameters, which are local, each
gravity harmonic is a global fLtnct ion representing a permanent component of the gcopotcntial.

Many global gravity models have been derived from historical satellite tracking data, which is often
sparse in some regions. GPS, however, leaves no coverage gaps. Since a polar orbiter overflies
the entire globe, GPS tracking of such a satellite can enable permanent improvement of the global
gravity model. That improvement will in turn redLlce the dynamic error and permit tighter
constraints on the process noise models in subsequent orbit solutions. Gravity tuning has elements
in common with redLtccd  dynamic orbit estimation: Both tcchniqLws  adjLtst  a large number of force
parameters to bring the solL1tion trajectory into closer agreement with the data, Where gravity is the
dominant model error, gravity tuning is a desirable first step, since it yields a permanent model
improvement.

4. l)irect  Orbit Determination with GPS

Sophisticated estimation strategies may be of little value in direct GPS-basecl  orbit determination,
where only the onboard (3PS obscrvables  and broadcast data are used in the orbit solution.
A]thoLlgh nmasLtrenmnt  noise can bc redLtced to centimeters by filtering, final Ltser orbit error will
bc dominated by GPS ephemeris and clock error (with possibly large contribLttions  from the
ionosphere and selective availability for the SF’S L)ser)  at a level of meters to tens of nmtcrs. While
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(iynamic filtering can mitigate those errors, cval Llating the expcctcd  accuracy of the resulting
solution is not straightforward.

Cbnsiclcr  the batch least sc]uares  dynamic solution of Iiqs. 8-9. It is easily shown that the error
covtiriancc  PX on the estimate ~ is given by

Px =- (A”l’ R; ] A)- 1 (30)

‘Ilis is the formal error due to the random mcasummcnt  noise vector  n (Fq, 5), sometimes called
the commission error, It clocs not take into account other errors present in the solution, such as
those dLJe to GPS orbit and clock errors, sometimes called omission errors. To exanline  the effect
of such errors we can inclucle the relevant parameters and their relation to the observations
explicitly in the regression ec]uation (5) by writing

&= Ax+ By+n (31)

where y is (11c vector  of omission error parameters and B is a matrix of partial derivatives of the
observations &z with respect to y. When the solution given by (8) is applied to (31 ) we have

i = x i- (AT’ KI’A)-’ATR; lBY +- ii (32)

where ii is the transformed random measurement noise. “l’he long coefficient in front of y in (32)
dcscribcs the response of the estimate ; to the error parameters y, and is called the sensitivity
matrix, S, where

S = (AT’R~l A)- 1 A~R~l  B

‘Ile total error covariance,  P[OL, of the estimated vector i is given by

Ptot = P, + s Poll, ST

(33)

(M)

where P{),],, the a priori covariancc matrix for the omission errors, mLlst be derived through careful
analysis of those errors,

Since many omission errors arc physically unrelated and can be regarded as uncorrc]atcd,  PO,,] can
often bc (and almost invariably is) set up as a diagonal matrix. ‘l’he errors on the elements of a
dynamic satellite state solution, however, are strongly correlated, (Note, for example, that there is
a clirect  relationship between satellite a]tit Lldc and in-track velocity; in a dynamic solution, an error
in onc will appear  as a compensating error in the other. ) A diagonal covariance  matrix is therefore
ina&.x]Llatc  to assess the effect of GPS ephemeris error on a dynamic Llscr orbit solution, and in fact
can be shown to give a highly pessimistic estimate of the error that actually arises. To evalL1ate  the
effect of GPS orbit error on a dynamic user solution, a fLlll covariance matrix is nccdcd  for the
GI’S state parameters. One way to obtain sLlch a matrix is to simulate the GPS orbit determination
process as it is carried out with ground data to prodLlce  the GPS orbits available to the user.



Sucl] a stLlcly  was doJ]c by 13crtiger  and Yunck ( 1990), The results showed that errors in the GPS
orbits  were attenuated by roLlghly a factor of two in the dynamic sol Lltion for a low orbiter at
1300 km a](itLldc.  That is, GPS orbit errors of 1 m resultccl in errors of aboLlt  0,5 m in the user
orbit. (When a diagonal GPS covariance  matrix was used, this error was overestimated by a factor
of aboLlt  (wcnty. ) Because the satellite under study was at the relatively high a]titudc of 1300 km,
model  error was at the decimeter level and the full bcnefil  of dynamic smoothing could be gained.
With a typical GPS broadcast ephemeris error of 5 m, wc could expect to achieve a dynamic real
time solution for such a satellite accurate to 2-3 m, litnited by the GPS orbit error.

At lower a]titLtdcs, dynamic modeling error grows. At 500 or 600 km dynamic error may roughly
cclLtal  CiPS ephemeris error. Below 500 km, user dynamic error may dominate, and the optimal
filter will therefore dcwcight  dynamics. For the Space Shuttle  at 300 km, the optimal weighting
will bc almost purely kinematic; the Shuttle position error will therefore be essentially the range
error (dominated by GPS orbit error) times the PDOP. Because GPS orbit errors change slowly,
the direct kinematic error will be highly correlated from one second to the next.

“I%c most accurate direct orbit solLltions are therefore obtained by dynamic filtering for satellites
above about 800 km (and below 3000 km), with the accuracy 1 imitcd by ~JPS orbit error. ‘J’hc best
CiPS orbits produced today (available typically several days after the fact) are accurate to better than
1 m. in principle, such accuracies can be achieved nearly in real time. Moreover, accuracies of 1-
2 m can be reached for GPS orbits and clocks predicted several hollrs into the futLlre  (1 ,ichtcn  and
Bertigcr,  1989), and thus available for true real time use. If dynamic filtering reduces the resLtlting
user error by a factor of two above 800 km, real time dynamic tracking could be made accurate to
about 1 m. At the lowest altitudes, where the kincmalic  solution is optimum, accuracy under  these
conc]itions  wou]d reach a few meters. For fLlrther improvement at a]] altitudes wc must introdLlce  a
means of reducing ~IPS orbit error.

5. Precise Orbit Determination with GPS

A few classes of mission require orbit accuracies ranging from 1 m (land altimetry, precise
imaging) down to a fcw centimeters (ocean altimetry, gravity field modeling). For that level of
performance we tLm~ to (he tcchniqLlcs  of differential GPS. As it has been clcvclopcd for scientific
prccisc  orbit determination, differential GPS is intended for non-real time applications and differs
considerably from the real time differential tcchniqLlcs Lused for regional navigation.

The fundamental concept is il]Llstrated  in Fig. 4, In addition to the flight rcceivcr, a network of
reference receivers around the world continLloLlsly  tracks all GPS satellites in view. It is essential
that the flight receiver and at least one groLlnd reccivcr share common visibility of several GPS
satellites at all times. If they are well distributed, only aboLlt six groLlnd sites arc needed to ensLwc
this, though in recent experiments with 3’opcx/PcJscidon  a dozen  or more have been USCCI.  Several
groLlnd receivers maybe atfiducial  sites—sites with accurately known absolute positions that will
bc held fixed during the solution. The best current ground site positions (for example, those of the



lntcrnaticmal Terrestrial Rcfcrcncc Frwnc maintaincc~  by the lntcrnationa]  I;w-th Rotation Scrvicc  in
Paris) are known relatively to 1-2 cm, and absolutc]y  (with respect to the geoccntcr)  (o about 3 cm.

Pscu(iorarlgc  and carrier phase data from the flight and ground rcceivcrs  are processeci together to
produce a single grand solution. l’hc solution strategy can vary greatly in detail, but typically
inc]udcs  estimation of all GPS satellite orbits; the user orbit; transmitter and receiver clock offsets;
al] carrier phase biases; non-fiducial ground site positions; atmospheric delays at ground sites; and
atmospheric drag, solar radiation pressure, and other satellite force parameters. Data arc lengths
may range from a few hours to many days. Bccausc  only the fiducial sites are held fixccl in the
solution, they establish the reference frame in which all other positions are dcterminccl.

one vari:ition  permits [{II ground sites to bc adjusted within a moderate constraint, typically 10-
1000 m on each site. This severs the tic to a predetermined reference frame and allows the entire
solution to rotate within the limits of the over:ill constraint. The solution is then nmppcd into a
chosen rcfcrencc frame (sLlch as lTRIi) through a seven-parameter transformation (translation,
rotation, and scale) which minimizes the, 3-D RMS diffcrcncc bctwccn all ground site solutions and
their values in the chosen frame. This removes dependence on a particular subset of sites to define
the rcfcrcnce frame and rcdLlces refcrcncc station error in the total error budget. A lCSS powerfL]l
variittion processes the groLlnd and user data separately. The ground data first determine accurate
GPS orbits and clock offsets, which are then applied in a direct user solution. ‘l’his  dots not
exploit the paranmtcr  correlations that arise in the true simultaneous solution, and hcncc dots not
achicvc the same degree of error reduction, but may offer greater flexibility and convenience.

While global differential tracking constitutes a major logistical departLwe  from (iircct tracking, the
basic filter equations needed to carry it oLlt (Iiqs. 16-21) remain Llnchanged.  What changes is the
definition of the estimated state vector X. “1’o the user state and other adjLlsted  parameters we now
append state elements for all ~JPS satellites, clock offsets for all transmitters and rcceivcrs,  ground
site positions, atmospheric delays, and so on. ‘1’hc matrices of measurement partials  and a priori
covariancc are correspondingly augmented, and the solution becomes more computationally
dcmamiing.  1[ is wor[h examining in more detail how some of the key parameters are treated.

b) l’ine l’oints of the Global  Solution

When carrier phase data are used in a grand solLltion, either alone or together with pseudorange,
the effective data noise (random n~casurerncnt  error) is typically below 1 cm. This can be seen in
the post-fit residLla]s of global  geodetic solLltions,  which for the combined dual frequency phase
observable arc typically 3-6 mm. As revealed in numerous covariancc  studies (Ik]. 24), random
mcasurcmcnt error will contribLltc  on the order of 2-3 cm (o the user position error-- somewhat
higher for purely kinematic solutions and lower for purely dynamic solutions. In the grand
solution, the major systematic mode] errors that plagLle the direct solution (GPS orbits and clocks)
arc reduced, Note, however, that if CIPS satellite dynamics and clocks are poorly modelccl, the
G1’S orbit and clock estimates will degrade and systematic errors will still arise in the user state
solL)tion.  I:ortLlnately,  the high-altitude GPS satellite dynamics can be well modeled over 24 hrs,
and standard dynamic GPS sol Lltions  generally sLlffice. l~or longer arcs, a weak stochastic
acij LMnmnt of the ~TPS solar pressure paramctm may be required.



I;or clock solu[ions  wc have several opiions.  If high quality atomic clocks arc used in all rcccivcrs
and transmitters, simple quadratic models migh( suffice over many hours. Because, real clock
behavior can be unpredictable, common practice is to allow for the wors( by solving for all clock
offscis indcpcndent]y  at each time step under  a loose constraint. ‘l’his is ec]uivalent to modeling
clock behavior as a white noise process with large variance, in analogy with oLlr treatment of the
process noise  state parameters in the kinematic orbit solution, It is also similar to the popular
practice of double cliffcrencing to eliminate clock parameters; however, when global  data sets arc
used, as they must bc for precise orbit determination, the white noise clock model is more
powerful, as it retains more data (Wu, 1984). Just as purely kinematic orbii detcrnlination  fails to
exploit known dynamics of the satellite, white noise clock models fail to exploit known (and
perhaps very smooth) clock behavior, and thus must be rcgarcicd  as a conservative strategy.

Om~pLltcr  simulations, covariancc studies, and rcsLllts  with Topcx/Poseidon have shown that the
grand solLltion  strategy can reduce user satellite position errors due to GPS orbit and clock errors to
a fcw ccntimctcrs.  What then becomes the dominant error in the user sol Lltion? one candidate is
the error in modeling atmospheric proJ>agation  delay at the ground sites--–or, rather, the variable,
wet component of that delay. When standard seasonal models (supported by surface weather data)
arc used to calibrate the atmospheric delay, the error is typically 3-5 cm at zenith, which may
translate into 2-10 cm of user state error, depending on the solution technique. This can be
reduced by periodically solving for a z,eni(h  delay at each site. The most powerful strategy yet
developed is to model the zenith delay as a stochastic process (a random walk, for example) and
adjust it at each time step under a constraint derived from the observed power spcctrLln~  of
atmospheric delay variation, Typical zenith delay acc Llracics  with this tcchniqLle  are about 1 cm.

l~inal]y,  wc note that each carrier phase observable contains an arbitrary bias corresponding to
integer cycle anlbigLlities  at each frequency. Those biases must bc estimated (or eliminated by time
diffcrcncing) whenever the phase observable is used, In precise groLmd-based geodesy, an effort
is often made to determine the exact integer cycle anlbigLlitics  in the differential obscrvablcs and
then fix the biases at those values. F&solving anlbigLlitics  between an orbiter and groLlnd sites is
demanding [ind, when many hours of data are used, can be shown to contribLltc  little to solution
strength, since at that point data noise is not a dominant error. The differential strategies described
here attempt no cycle anlbigLlity  resolution, and instead treat each bias as a continLloLls  variable in
the .grtind  soJution,

c) Prmi.w Orbit IX?terttlination  Perfb-mmcc  Amlysis

It shoLl]d now be evident that the general strategy for achieving high accuracy with CiPS is to
exploit the great strength of GPS data to observe and correct any systematic errors that threaten to
dominate. Just how the data will stand LIp to this demand depends on many details of system
configLlration and solLltion  strategy. To illLlstrate  those dependencies, wc present the resLdts of
conlpLltcr Covariancc  stLldies for severs] rca] or proposed missions. All stLldies  inc]Lldc both
commission and omission errors in an at[cmpt to arrive at realistic final error estimates.

“1’he  first example is taken from error studies conducted for Topcx/Poseidon  years in advance of its
!aLulch  in ALlgust  of 1992. TopcxlPoscidon is a U.S.-French ocean altimetry mission flying at an
altit Lldc of 1336 km, where dynamic model errors are now well below 10 cm. The ~JPS
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con f]gLlration  for “1’opcx/Poseidon includes a six-channel (clua] frequency) flight receiver with a
hcnlisphcrjcd]  field of Vjcw, and a six-site groLlnd network. The assLlnlptions, error model, ancl
CStillliitiOll  strategy arc sunlnlari7ed  in Table  1. Note that a rcfcrencc frame error of Scm per
componcn[  for each of three fidLmial  sites was assLm~cci,  far greater than that error today.

I“jgLlre  5 shows the predicted RMS altitLlclc error for three sol L1tion  stratcgk--- dynamic, kinematic,
i~nd optimized rcd Llccd dynamic-as a fL]nction  of the gravity model error, IiecaLlsc  the kinematic
solLltim~ eliminates dynamic error, it is independent of the gravity model. Its total error js divided
almost eqLlally  between data noise and rcfcrcnce  site error (which will virtLlally  disappear with the
free network strategy). The dynamic solLltion  error depends strongly on gravity error and becomes
limited by data noise and reference frame errors only when gravity and other dynamic model errors
approach zero. ‘l’he optimized  redLlced  dynamic stlategy  surpasses both kinematic and dynan~ic-–
the latter even when the gravity error is zero, sh~ce  other dynamic errors will still be redLlced.

Also shown in liig, 5 are three dots representing actLial  results from Topcx/Poseidon obtained
durjng  the first year of the mission. The dots give the RMS altitude agreement bctwccn  pL1rcly
dynamic solutions made with ground based laser ranging and Doppler data, and the GPS redLlced
dynamic solLltions.  An RMS agreement of about 6 cm was obtaincci  with the final prc]aLmch grav-
ity model, known as JGM-I,  which has a quality roughly in the center of the ran.gc shown. This
agrccmcnt  improved to about 3.5 cm when the JGM-2 model, which had been tLlned with laser and
Doppler tracking data, was prodLlced  by t}lc Goddard Space Fljght  center several months after
laLlnch  (YLmck et al, 1993). ‘l’he agreement improved fLuther,  to aboLlt  2.5 cm, when the JGM-2
model was tLmcd  wjth the more comprehensive GPS data by investigators at the lJnivcrsity of
‘1’cxas (SchLlt?, et al, 1993). At this point the RMS a]titLldc  error resL)lting from gravity misnlodel-
ing is bclicvcd  to be no more than 2 cm.

I’ast ocean altimetry missions have been plagLlcd  by what arc known as geographically correlated
orbit errors---that is, orbit sol Lttions that arc consistcnt]y  bjascd  in different geographic regions,
SLlch errors can confound the construction of global circLllation  models from the altimetry data.
Geographically correlated orbit errors are often a conseqLwnce of geographic biases in the gravity
moclcl,  a\[hoLlgh  other factors may also play a role. Studies by RosboroLlgh and Mitchell (1990)
showccl  that kinematic and rcdLlced dynamic orbjts,  by redLlcing dependence on force models in
general, can virtually eliminate any geographic correlation in orbit errors rcsu]ting from the gravity
model. That result was dramatically confirmed with l’opcx/Poseidon, 1,aser/Doppler dynamic
orbit solLltions with JGM- 1 showed consistent and pronounced geographic discrc.pancics  from the
GPS reduced dynamic solutions. In later dynamic solutions employing the G}>S-tLuled  gravity
model, geographic discrepancies had all bLlt vanished.

A second example is taken from the Earth C)bserving System, a sLlite of scientific Earth probes
planned to fly at aboLlt  700 km, beginning in the late 1990’s. IlccaLlse  dynamic errors may grow
large at that a]titLlde,  a pLlrely kinematic analysjs  is presented, This time the reference site error js
rcdLlccd  (o 3 cm per component. Other assLm~ptions  that differ from the Topcx/Poseidon  analysis
arc shown in Table 2. Figure 6 shows the resLllting predicted altit Lldc error as a fLlnction  of data
arc length for several different ~TPS data combinations. The data type called “carrier-qLla]ity  range”
is a fictitioLls  pseLldorange  nwasLlrenlent  havjng  tbc precision of carrier phase, and serves to
establish a performance bound,
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l;igurc 6 indica[cs  that few-centimeter accL1racy  is possib]c  for dynamically complex platforms, ancl
that even the biased carrier phase observable used by itse]f can approach ihc performance of the
strongest possible data type, It may seem sLwprising (hat the kinematic solution c:in sLicccccl  w,ith
carrier phase alone, since lhc grand solution nlLlst  estimate phase and clock biases, and those biases
arc. nicely constrained by pseudorangc  data. But the [iynamic core of the kinematic sol Lltion  allows
the biases to be rcliab]y  estimated, just as they are in any integrated Doppler dynamic solution.
‘1’his illustrates a fundamental difference between the process noise Kalman filter formulation and
the simp]c  carrier-pscL1dorangc  bias estimation of Sect, 3-a. “1’hc latter depends entirely on
pscudomngc to provide an absolute phase bias estimate, while the former can recover the bias
dynamical] y (while correcting the model kinematical y) when range information is absent,

A third study explores the limits of kinematic performance with a stringent tracking challenge: the
Space Shuttle at 300 km. For a given phase noise, kinematic tracking accuracy is limited largely
by observing geometry, which wc strengthen by assLmling  a full sky field of view (each ShLlt(le is
eqLlippcd  with (31)S antennas top and bottom to permit this), a flight receiver able to track all
satellites in view (typically 13-15), and eleven groLlnd sites, with reference site error of 1.S cm pcr
component (aboLlt what it is believed to bc in 1994). Other assLln~ptions  are given in “l’able 3. As
shown in I;ig. 7, the ]imiting  error in a]] components now approaches ] cm, thoLlgh  in reality
dyntimic  errors in the GPS satc]lite  orbit sol Lltions  may degrade this somewhat. This opens LIp
new possibilities for near-earth ocean altimetry and other precise Earth observations on platforms
of opportLmity,  and for shol”t-dLwation  testing of precise instrLln~ents  on the Space Shuttle.

[i) SirJglc-Frt>q[4cll(’Jj  Precise Orbit Determimlim

‘1’hc carrier-only kinematic solLltion  is more than a cLwiosity.  It will allow accLlratc  orbit dcternlina-
tion with simple codeless receivers, bypassing the effects of anti-spoofing, and can bc used to
achicvc  fair orbit accLlracy  with single-frequency data as well (Y Lmck, 1992), In the examples thus
far WC’VC assLlnlcd  dLla]-flt3ClUCJlCY  elimination of ionospheric delay;  bLlt the ionosphere can also be
removed by averaging the 1.1 phase and pscLldorange  observablcs. consider these simplified
expressions for the phase and groLlp  delay (pseLdorange)  obscrvablcs  :

(35)

and

(36)

where 1’IK is the total electron content along the raypath,  f is the observing frcqLmlcy,  k is a
constant, E is the ran(iom measurement error, and ‘t is the common delay dLw to geometry and other
factors besides the ionosphere. Note that the ionospheric term is identical in both equations bLJt

appears with opposite sign. Forming the simple average of (35) and (36) wc obtain
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(37)

‘1’he ionospheric term is cancelled  and the resulting, observable has the form of the biascci  carrier
phase dclhy (35). Because E.g,P is much greater than CO, the effective nleasLnwmnt  error on (37) is
half that of pscudorangc. ‘1’his is sometimes ca]lcci  the G~A1’HIC (G1{oup  Anti Pllasc Ionospheric
calibration) observable. Note that the conventional ciual-frcqLmncy  correction increaws  raw data
noise by a factor of three; thus if single-frequency phase is 100 times more precise than pseudo-
rangc,  dual-frequency phase will be only 16 times more precise than the CiRA1’lIIC  observable.

Mo(icrn receivers that employ 20 MH~, CYA-cocic processing can recover C7A pscudorangc  with a
precision of better than 50 cm in 1 sec. The Ci~AI’HIC  observable reduces this by haif. Smoothing
over 60 sec can bring the error below 10 cm. Figure 8 shows the predicted 3-D RMS position
error for the ShLltt]c at 300 km with three solution strategies: ciLlal-freqLwncy  dynamic, GRA1’lIIC
kinematic, and ciLlai-frcqLwncy  kinematic. Key assLln~ptions  are shown in Table 4. Note that drag
and gravity errors make the dynamic solL]tion worse than simple point positioning. ‘1’he kinematic
solutions improve orbit accLlracy  by two to three orders of nlagnitLldc,  reaching aboLlt  2 cm per
component with dual-frequency phase. ~’hc order-of-magnitude difference betwmn  the two
kinematic cases is explaineci  by the higher data noise on the ~~A1’HIc observable, which was
assLlnlcci  al all groLmci sites as weli.

Single-freqLlcncy ionospheric calibration was demonstrated for the first time on an earth satellite by
Gold et al (1993). The 13xtrcrne  Ultraviolet Explorer (Et.JE), flying at about 500 km, is equipped
with a 12-channel 1.1 -only receiver and two oppositely (iirecteci  antennas, providing a fLlli sky ficlci
of view. Many (3PS lracks acqLlired by IiUJi look down through the ionosphere, where the a[ided
delay can exceed 50 m. FigLwe 9 presents typical postfi( rcsidLlai  plots for I;LJI;  GPS orbit solutions
with both uncorrected 1.1 phase (a) and the inherently noisier bLlt ionosphere-corrected (i~A1’HIC
observable (b). In the latter case, large ionospheric cxcLwsions are entirely absent. Direct conq~ari-
son of orbit overlaps indicates an RMS altitLlde  error of less than 1 m in a ciifferential  reciuced
(iynamic l~lll;  solLltion  with the singic-frequency Ci~AI’lllC  observable.

c) l.htmsion  to IIi.gher A ltitwie Satellites

Above aboLlt 3000 km, an orbiter begins to lose coverage from GF%. 13Llt  since dynamic mo(ieling
error can be small at high a]titudes,  the dynamic orbit solLltion  can remain stror~g. By looking
(iownwar(i  to catch the signai spiliovcr  from satellites on (he other si(ic of the earth, an orbiter can
exploit GPS from well above the GPS satellites thcmsc]vcs,  OLIt to gcosynchronoLls  altitLlde  and
bcyonci.  Alternatively, high satellites can carry GPS-like beacons to bc tracked from the groLlnd,
with the GPS satellites serving as reference points, a technic]Lm  known as inverted  GPS. FigLue 10
(from WLI et al., 1992) plots the average number of CiPS satellites that can bc tracked by a circLllar
orbiter as a fLlnction  of aititLlde,  for both upwar(i-  and downward-looking vehicles, where each is
assLmlcd  to have a hemispherical field of view. Note that above aboLlt 2000 km, the down-looking
Llscr  can always track more. The figure also plots the average nurnbcr  of groLmd sites that can
track a beacon on a circLdar orbiter, assLm~ing  a (en-site giobal network.
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A study of direct orbit determination wi[h down-looking GPS (Wu et al,, 1992) was cm-ricd  oLlt  for
NASA’s geosynchronous “1’racking  and Data Relay Satellites (TDRS). With CiPS orbit error
assLInlcd  to be 7 m and clock error 2 m (SA off), a predicted 3-D TDRS position accuracy of 12 m
is rcachc(i  clynamically  after 8 hrs, improving to 9 m after 24 hrs. With SA assumccl on, the. e.rmr
jumps to over 100 m at 8 hrs, declining to 60 m at 24 hrs.

A ground network of a do7,cn sites can now easily provide sub-meter GPS orbit accLlracy. If those
receivers were to track an additional high altitu(ie  beacon, all orbits could be estimated in one
solution with comparable relative accuracy, scaled for distance. Wu et al, ( 1992) examineci  this
invctlc(i  CiPS tracking for TDRS as wcli. With assumed data errors of 25 cm for pscLtciorangc  and
1 cm for carrier phase a( 30 min intcrvais,  and a six-site ground network, the predicted 3-D RMS
orbit error over a 24-hr dynamic solLltion  arc was aboLlt 3 m for the TDRS satellites.

j) l~ighly Ellijtica[  Orbiters

Since the preferred tracking modes and solution [cchniqLlcs  differ for high
application to highly  elliptical orbiters, which may ciesccnd  to a few hLlndred
tens of thoLlsands, present a special challenge. IJp- and down-looking
groLmci-bascci  Doppler dLlring  the high a]titLldc phase can provide particLdarly

and low orbiters, the
kilometers and rise to
GF’S combined with
strong coverage. The

proposc(i  MIJSES-11 spacecraft, part of the Japanese very long baseline intcrferomctry  (VI ,131)
Spzicc observatory Program, was stLldicd  by WLI et al. (1992). MUSES-B would move from a
pcrigcc of 1000 km to an apogee of 20,000 km, The investigators applied a rcdLlccd dynamic
strategy while the satellite was below 2000 km, an(i a pLlrcly  dynamic strategy clscw}lerc.
Combined omnidirectional ciiffcrcntiai GPS and groLmd-base.d  Doppler gave a prcciictcci  orbit error
of 50 cm for all position components at apogee, falling to less than 10 cm at perigee.

A similar mission, the proposed ]ntcrnational  V1.BI Satellite, woLdd have a perigee of 5000 km,
enabling a pLlrcly dynamic solution around the orbit, WLJ et al. (1992) foL]nd that with onmidirec-
tional  (iiffcrential GPS and groL1nd-bascci  Doppler, as the apogee increases from 40,000 to
] S0,00() km, position error at apogee increases from about 15 cm to over 2 m. SLlch accLlracy  is
ncc(ied for only a select group of missions, Direct GPS orbit determination with omnidirectional
reception coLlld  provi(ie 10 m or better accuracy for nearly all highly elliptical orbiters.

6. Dealing with Selective Availability and Anti-Spoof

‘l”bc  two GPS security features, selective availability (SA) and anti-spoofing (AS), can pose
problems for SPS users. C)ver the years, varioLls  strategies have been devised to a(idrcss them.

a) A!lti-.?poojltlg

Anti-spoofing is the encryption of the P code to prevent mimicking of the signai by others. In the
presence of AS, a conventional SPS receiver woLl]d be able to track only the CYA code, recovering
pscLldorangc and carrier phase on 1..1 only. This would prohibit compLltation of the standar(i  dLla]
frcqLlcncy  ionospheric correction. The ionospheric effect of coLlrse  depends on the a]titLldc  and
field of view of the Llser.  Above aboLlt 1000 km (and assLm~ing an upward-directed hcmisphcricai
field of view), the rare ionosphere permits sLlb-nletcr  single-freqLlcncy orbit accLlracy, even with no
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correction. At 10WM altitucks, as shown on }{[JIi,  the [iRAPIllC calibration used in a rcdLIccd
dynamic differential solu[ion  can give. an orbit accuracy of aboul  1 m. That approach holds
pmmisc  in both real time and post-processing uses for till but the most demanding rcquircmcnts.

1.OW orbiters seeking sLlb-ciccinwtcr  performance must turn to dual frequency c:ilibra(ion.  ‘1’here
are several CJPS rcccivcr designs that ope.rate in a codclcss  or quasi -coclclcss mode; that is, they
produce carrier phase (and, in some cases, pseudorange)  al both frcqL\cncies  without knowledge of
the prccisc  codes. Although codeless data arc of degraded precision, the typical codclcss  phase
crr’or of about ] cm in 1 sec is consistent with the assLlmptions Llsed in the stLldics  prcscntcd  here.
P}~asc nlcasLlrcnlent  noise, moreover, is generally not the dominant error in an orbit solLition,
Tracking performance will therefore bc Iargel y Llnaffe.clcd  by a switch to codeless opcrat ion.

b) Selective A vailability

SA consists of two nleasL1res  to degrade positioning accLlracy  to the unaLlthori~,ed LIscr: the
inscrlion  of errors into the broadcast ephc.rne.ris  and clock parameters, and “dithering” of the
fundamental oscillator. Neither of these n~easLwes  poses a problem for differential CiPS tracking as
wc have cicfincd  it here. Receiver sampling times can bc synchronized so that ditbcr  effects arc
common to all n~casLlrcnlcnts  and drop oL~t  of the differential solLltion. When sampling is not
synchronized, quadratic interpolation to a common epoch can still achieve a high degree of dither
cancellation provided the sampling interval is no longer than about 30 sec (WL] ct al, 1990).
}~phcnleris  and clock errors do not come into play since those qLlantities  are solved for with the
groLmd  data, either together with the Llser orbit or in advance.

f<cal lime direct GPS Llscrs  cncoLlnter more difficulty. “1’hose withoLlt access to accLwate  GPS
orbits conlpL1tcd  elsewhere will have to rely primarily on dynamic smoothing to rcdLlcc the effects
of both the orbit error and dithering. At nominal SA lCVCIS,  the broadcast orbit error is 40 m or
ICSS  on ca~h  satellite. (In recent years, in fact, the broadcast ephemeris has remained Lmcorrupted
even when dither is active. ) From the vantage of the Lmr, the corrLlpted  orbits will appear to some
clcgrcc inconsistent with the GPS n~easLlrements  and the user’s dynamics-and the dynamic
solLltion  will then attcnLlate  GPS orbit error. Early stLldics  suggest that the error redLlction  will be
aboLlt  a faclor of two. A 40 m GPS errors may yield a 20 m Llser  error. The actLlal  redLlcticm will
depend on the solLltion  strategy, receiver capacity, field of view, and other fi~c.tors.

Smoothing of dither error by dynamic filtering has been more thoroL~ghly  analyz,ed. Ilar-Sever ct
al. ( 1990) simulated the dither process to examine the error reduction as a function of dynamic arc
length. IJigurc  11 shows the net 3-D error (dLle to dither only) for smoothing periods ranging from
zero (point positioning) to 6 hrs. The receiver is assumed to track all satellites within a hetnisphcre.
ancl dither is set at its nominal lCVCI.  We scc that with no smoothing, the RMS dither error is aboLlt
30 m. After 2 hrs this falls to 5 m, and after 6 brs to less than 3 m.

A satcl]ite like Topex/Poseidon, which has WC]] modeled dynamics, can realize the fLlll  benefit of
dynamic SA smoothing. At a]titLldes  below aboLlt  600 km, dynamic model error will begin to
offset t}]c gain from smoothing, and at typical ShLltt]c a]titLldcs  the optimal direct solLltion  may bc
little bct(cr than the point position solLltion Llndcr SA, 1’0 improve real time accLlracy  at low
a]til Llc]cs, some form of near-rca] time correction mLwt bc aJqJ]icd.  This coLl]d bc carried oLIt, as is
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now commonly done for air and sL1rfacc  navigation, with pseudoriinge  corrections derived at
reference sites broadcast directly to Llsers.  systems  may soon bc in place to scncl sLlch corrections
over wicic  areas through geosynchronous satcl]itcs (SCC Vol. 1, 01.2 l). A low orbiter cqLlippcd to
receive those corrections could then achieve real t imc posit ion accumc y of a few meters under SA.

7. Summary

“1’hc positioning strength provided by GPS is transforming I%rth salcllitc orbit determination. With
even the simplest receiving equipment it is nc)w possible to determine (he position of a low orbiter
illst:tJlt:ir~ec~Llsly  to tens of meters, sLlfficicnt  to meet the needs of most missions. The classical
framework of clynamic  orbit estimation can be adapted for GF%-equipped satellites in virtually any
orbit to deliver orbit accuracies beyond the previous state of the art. Many low F.arth sate]] itcs now
in the planning stages will carry GPS for basic navigation and timing, and in some cases for direct
scientific uses. Before GPS, orbits below 700 or 800 km coLl]d not be considered for altimctric
satellites seeking accuracies of a decimeter or better. GPS promises to deliver fcw-centimeter
accuracy at the lowest aitit Lldes and for the most dynamically ill-behaved platforms. This creates
the opportunity for low-power, low-mass, low-cost altimetry al an altitude of a few hundred
kilometers, and for demonstrating precise sensing instrLmlcnts  on the Space Shuttle.

}~igurc  12 summarizes the performance that can be achieved as a function of a!titLlde  for both real
time direct and af[er-the-fact differential GPS-based orbit determination. The curves reflect the
optimal estimation strategy for each case. For satellites above 10,000 km the standard differential
technique is replaced by inverted GPS, where the orbiter carries a beacon tracked from the ground.
‘1’hc differential curve is consistent with the assLln~ption of a dual frequency codclcss (S1%)
rccciver and is therefore unaltered by the presence of SA (eliminated by differencing) or AS. All
curves for direct estimation assume the use of high quality (2-3 m) GPS orbits and clocks
distributed by civilian services, rather than the broadcast ephemeris, Thus only dither error is
inc]udcd  in the SA-on case. These curves are necessarily approximate, as actual performance will
depend on specifics of the GPS tracking configuration and satellite dynamics. But they offer a
view of the new standard CJPS brings to orbit determination for missions of every description.

Portions of tllc work described in this chapter were carried oLlt by the Jet PropLllsion  laboratory,
California Institute of Technology, under contract with the National AeronaLltics  an(i Space
A(iministration.
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TAB] Ii 1. lirror Model for I’opexfl’oseicion
Orbit Iktermination  Analysis

System Characteristics
—

orbit (circular):
Number of (iround Sites:

Number of GPS Satellites:
I;light Antenna l~ield of View:

l’light Receiver Tracking Capacity:
Ilita Types:

I)atrr lntcrwl:
Snmothed lJata Noise:

1334 km, 66° inclination
6 (including 3 fiducial sites)
18
Hemispherical
6 Channels (1.1 & 1.2)
].1 & 1.2 pseudcrrange
1,1 & 1.2 carrier phase
5 Minutes
5 cm pseudorange
1 cm carrier phase

Acijuste.d Pararmters & A Priori Ilrrors

Topcx/1’oseiclon  lipoch State: I km; 1 n]/see, e:ich component
GPS Sateliite  States: 2 m; 0.2 mnl/see, each component
Grrrier  I’base Biases: 10 km

[;1’S & Receiver Clock Diases: 3 mse.c (modeleci as white noise)
Non-l  ~iducial Ground 1.ocations: 20 cm each component

I;ixed lirrors I;valuated

I;iducial Site Positions: S cm each component
GM of Earth ~Jncertainty: 1 part in 108

1 iarth Gravity Ikror Model: 0- 100% G1iM 10-G1iMI <2 (20x20)
Zenith Atmospheric Delay Iirror: 1 cm (modeled as random walk)

Atmospheric I)rag El-m: 10% of ~“otal
Solar Radiation Pressure Iirmr: 10%J of Tc)tal

TABI.E 2. Changes from Table i for liarth Observing System
Kinematic Orbit Determination Analysis

Orbit (circuiar): 705 km, 98° inclination
Number of GPS Satellites: 24

I’light  Receiver Tracking Capacity: All in View (within hemisphere)
Z,enith Atmospheric Delay FJror:  Adjusted as Random Walk

}riducial  I.ocation  Iirror: 3 cm each component
Iiarth Ch-avit y lb-l-or  Model: 100$%  GEM 10-G}+MI  .2 (20x20)
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TAB] ,li 3. Changes  tI-on~ l’able I for Shuttle
Kinen)a[ic  C)rhit  Iletennination  Analysis

Orbit (circular): 300 kn), 28° inclination
Number of’ GPS Satellites: 24

Number of Ground Sites: 11 (including 3 t~clucial  sites)
l~light Antenna }~ield of View: I:uII Sky

Flight Receiver Trocking Ckpacity: Ail in View
Srmothe.d l)ata Noise: s cm pseudm-arrge

5 mm caru ier phase
Zenith Atmospheric Iklay Iirmr: Adjusted as Random Walk

Fiducial I,ocation Ihmr: 1.S cm each component
Iimth Gravity Iirror Model: SO%CiliMIO-CiEM12 (2(tx20)

TAIH .I1 4. Key Assumptions for Shuttle Single-l +equency
Kinematic Orbit Determination Analysis

Orbit (circular): 300 km, 98° inclination
Number of CiPS Satellites: 24

Number of GroLrnd  Sites: 6 (including 3 fiducial sites)
l~light Receiver ‘I’racking Capacity: All in View (within hemisphere)

Srncmthcd Data Noise: 10 cm pseuctorange (single-freq.)
I cm carrier phase

Zenith Atmospheric IkJay  I;rror:  Adjusted as Random Walk
liictucial 1 ,ocation Iirror: 3 cm each component

}larth Crravit y Ilrror  Model: 50% G1{M 1O-GHM1,2 (20x20)
Atmospheric l~rag Fmor: 10% of Total

28



(a) Succewivc  Position sc>lutimrs fron; fxeudomngc

T

(b) }’recise  (rock of position chmge from cmier  phfice

\
(c) Position solutions  derived fronl ;djusting  mcm

of (h) 10 man of (a)

I;ig. 1. In carrier-pseLdorange  point positioning, the bias in carrier-based position measurements
is estimated by averaging the difference between carrier and pseudorangc solutions. The result
retains  the precision and time  resolution of the. carrier solution, with a small residual bias.

True Path .~ \

}~ig. 2. The. kinematic orbit determination techniqLle  effectively reconstructs the observed trajectory
from the residuals of a dynamic orbit solution.

I~ig. 3. The purely dynamic orbit solution minimizes the contribution of random error, while
dynamic model error is fully  expressed; this is reversed in the kinematic solution. The reduced
dynamic solution yields an intermediate level of each error and can minimize. overall error.
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l;ig.  4. II] precise orbit cleterminaticm  with differential H’S, user and ground observations of CWS
arc combined to determine user, CiPS, ancl some grouncl  positions with respect to a subset of
ground reference or “fiducial” sites.

iLZ
‘E?L5L--l

urdwy trt

mid. 1900$

Quality of Gravity Modol

}:ig. 5. l’redicted  RMS altitude error for Topcx/Poseidon  as a function of the quality of the gravity
model, for three different solution strategies (see Table 1). Circles show actual RMS altitucle
agreement between CIPS reduced dynamic and Iaserfllopplcr  dynamic solutions macle with
the prelaunch gravity model (a), a laser/I)opplcr-tuned  model (b), and a CWS-tuned  moclel  (c).
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}Jig.  6, Predicted RMS  altitude error for F;OS as a function of data arc length, for purely kinematic
orbit determination and four data combinations. Key assumptions are shown in Table 2.



l~ig. 7, l’rcsiictcd  kinematic tracking error for the Space Shuttle with a robust GPS observing
system. Key assumptions are shown in Table 3.
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};ig.  8. Predicted 3-1) position error for the Space Shuttle  at 3(K) km, with three solution strategies
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l:ig.  9. Postfit residua]  plots  for GPS-based E~Jfi  dynamic orbit solutions with single-frequency carrier
phase data (a) and the single-frequency ionosphere calibrated GRAPIIIC  observable (b).
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liig. 10. Average numbers of CiPS satellites visible with upward and downward looking hemispherical
antennas, and average. number of sites from a lo-site ground network that can track an orbiting beacon, as a
function of altituck.

35r. r., r.,., ,l. ,,, ,1, IF.- .ifr.,,.l,,,~r

k’---]

Dynarkc  Smoothing of Dlthet Error I
l-t–l

Z3
t I

:a
; 25 I 1 1 ..1

:
E 2 0  - –J----–l . — .  1.. –.--.. L--- J– -.
.?
b
L515-

=
1“1

.:.

~ 10 “1

9
.,

~ _ _ _ r
. ..J. :. ;.

i—~- -
,,, ! .I, ,,. .l! ,. J(IL, ,I 41. .) L4. I4 . . . .

00 60 120 180 240 300 360
FI1lw  Interval  (nmutes)

l;ig.  11. Simulation results showing the 3-11 position error that results from SA dithering, set at its nominal
level,  as a function of dynamic smoothing interval. No other errors are shown.
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}:ig.  12. Summary of the estimated orbit accuracies currently achievable with both differential and real time
direct C~PS techniques. The direct solutions assume the use of precomputed  CWS orbits of 2-3 m accuracy.


